
The Swedish
Cloud Provider

Välkomna
Tech-fika: Så bygger du full redundans och
autoskalning i Kubernetes

20 november 2024

● What is redundancy?

○ Something no one wants to pay for upfront ever….

○ Something everyone wants when the service goes down at 1 a.m. on a Sunday
morning.

○ Insurance for all.

● Redundancy in, for example, databases means that the same data
is stored in multiple locations to increase availability and security.

● Used to protect against data loss, system failures, and ensure
continuous operation.

Redundancy

Why is Redundancy Good?
● Increased availability:

○ If one server crashes, the system can continue to function
using redundant copies.

● Data recovery:
○ Data recovery after a failure or attack reduces the risk of data

loss.
● Fault Tolerance:

○ Protects against hardware failures and human errors by having
multiple backups.

What are the Disadvantages?
● Increased resource costs:

○ Redundancy means that more resources (storage, servers,
networks) are required, likely increasing costs.

● System complexity:

○ Managing redundant copies can make the system more
complex and harder to maintain.

● Consistency issues:

○ Risk of inconsistent data if synchronisation between
redundant copies fails.

Common Redundancy Strategies
● Disk clustering

○ RAID et al: Methods for combining multiple disks for
redundancy and better performance.

● Replication:

○ Automatic copying of data between servers or database
systems to ensure availability and security.

● Failover Systems:

○ Automatic transitions to backup servers or systems in case of
failure.

Examples of Leveraging Redundancy
● Banking Sector:

○ Critical systems that require high availability use redundancy
to ensure services are always accessible.

● Cloud Services (Cloud Computing):
○ Data centres distribute data across multiple servers and

geographical locations for high reliability.

In Other Words

● Redundancy is an important strategy to protect data, enhance
system availability, and handle failures.

● Despite the disadvantages of cost and complexity, redundancy is
essential for mission-critical systems where data loss or
downtime is not acceptable.

Redundancy in Databases

● Physical Redundancy:

○ Copying data across different physical storage devices or
geographical locations.

● Logical Redundancy:

○ Copies of the same data at various locations in the database.

■ Purpose: Backup or faster access.

○ Data replicated across database servers or multiple systems
to improve fault tolerance and load sharing.

Physical Redundancy

Data and Logical Redundancy
● Master-Slave:

○ A primary server (master) handles write operations and replicates to
one or more secondary servers (slaves) that handle read operations.

○ If the master goes down, a slave can take over after manual or
automatic failover.

● Multi-master (e.g., Galera, Active-Active):
○ Multiple servers can both read and write data simultaneously, with

each node having the same responsibility. The system synchronizes
all nodes.

● Control plane clusters:
○ Distribute data and load over multiple nodes for improved availability

and performance. If a node goes offline others continues to handle the
work load.

Redundancy and Autoscaling with
Kubernetes

Keep Your App Alive!

It does it automagically if it has enough information…

Why? Doesn’t Kubernetes do this already
and automagically?

YES
NOand

Resource Management

Requests are the minimum resources required to
schedule the pod. It is also the amount that is reserved on
the node when it is scheduled.

Limits are the maximum allowed usage of resources on
the node.

apiVersion: v1
kind: Pod
metadata:
 name: frontend
spec:
 containers:
 - name: app
 image:
images.my-company.example/app:v4
 resources:
 requests:
 memory: "64Mi"
 cpu: "250m"
 limits:
 memory: "128Mi"
 cpu: "500m"

Units
Memory - Bytes (K, M, G, Ki, Mi, Gi)
CPU - Number of Cores (1, 2, 5, fraction 0.1cpu or 100m (millicpu))

Resource Management is Important

Requests and Limits

…are the foundation of workload management

…requests are a prerequisite for efficient autoscaling!

Resource Management - QoS

Guaranteed
Requests = Limits on every container in the pod

Burstable
Partial Requests and Limits on at least one container in the pod

Best effort
No Requests and Limits defined

Looking at Kubernetes Functions…

Pod Topology Spread
Constraints Pod Disruption Budget

Probes PriorityClass

Horizontal Pod Autoscaler Cluster Autoscaling

Key Benefits

● Allows you to define rules for
spreading pods across different
topological domains like nodes,
zones, or regions

● Ensures even distribution to
prevent overloading specific
areas of the cluster

● Enhanced Resilience: Reduces risk
from single points of failure

● Balanced Load: Avoids resource
hotspots by distributing pods

● Customizable Rules: Control over
distribution to suit application needs

Use Case
Critical for high-availability
applications that need resilience
against infrastructure failures

Purpose
Distribute pods evenly across available
infrastructure (e.g., nodes, zones) to
improve reliability and reduce risk of
failure

How it Works

Pod Topology Spread Constraints

Sto2Sto1

Node1

App
Pod

App
Pod

Other
Pods

Node2

App
Pod

Other
Pods

Node3

App
Pod

Other
Pods

Node4

Other
Pods

Pod Topology Spread Constraints

Sto2Sto1

Node1

App
Pod

Other
Pods

Node2

App
Pod

Other
Pods

Node3

App
Pod

Other
Pods

Node4

Other
Pods

App
Pod

Pod Topology Spread Constraints

Key Benefits

● Defines rules to set the minimum
available or maximum
unavailable pods

● Applies during planned
maintenance (e.g., node
updates) or voluntary disruptions
(e.g., scaling, manual restarts)

● Increased Reliability: Maintains
application availability during
disruptions

● Controlled Maintenance: Allows safe,
predictable updates to the cluster

● Customizable Policies: Tailored to
application availability requirements

Use Case
Ideal for stateful or critical
applications that need strict
availability guarantees

Purpose
Limits the number of pods that can be
unavailable during voluntary disruptions,
ensuring application stability

How it Works

Pod Disruption Budget

Key Benefits

● Liveness Probe: Checks if a container is
running. Restarts container if it fails

● Readiness Probe: Verifies if a container
is ready to accept traffic. Removes it
from the service endpoint if it fails

● Startup Probe: Confirms if a container
has started successfully. Useful for
slow-starting applications

● High Availability: Automatically restarts or
isolates unhealthy containers

● Traffic Control: Prevents traffic to pods that
aren’t ready, enhancing reliability

● Customization: Configurable probes to suit
application needs

Use Case
Vital for production applications that
require continuous availability and
fault tolerance

Purpose
Monitors pod health to ensure only
healthy containers are accessible and
running effectively

How it Works

Probes

Key Benefits

● Assigns priority levels to pods, with
higher-priority pods scheduled before
lower-priority ones

● Enables preemption: Higher-priority
pods can evict lower-priority pods to
free up resources when necessary

● Guaranteed Critical Workloads: Ensures
essential applications run even during peak
demand

● Resource Optimization: Prevents less
important workloads from blocking critical ones

● Customizable: Allows you to define priority
levels based on application needs

Use Case
Essential for production environments
with mixed critical and non-critical
applications

Purpose
Sets priorities for pods to control
scheduling order and preemption,
ensuring critical workloads run during
resource shortages

How it Works

Priority Class

Priority Class

● Focus: Manages resource usage at the node
level.

● Categorization: Pods are assigned a QoS class
(Guaranteed, Burstable, BestEffort) based on
their resource requests and limits.

● Purpose: Controls how pods behave during
resource shortages on a single node, with
Guaranteed pods having the highest priority.

● Usage: Ensures critical pods receive sufficient
resources and are not affected by less
important pods.

● Focus: Manages scheduling order and
preemption at the cluster level.

● Assignment: Pods are given an explicit priority
based on their defined Priority Class.

● Purpose: Determines which pods are scheduled
or preempted first when resources are scarce
across the cluster.

● Usage: Ensures business-critical applications
are prioritized over less important workloads.

QoS

QoS vs Priority Class

Key Benefits

● Monitors CPU, memory, or custom
metrics to determine pod utilization.

● Scales out by adding pods when
demand increases; scales in by
removing pods when demand drops

● Improved Performance: Ensures applications
have enough resources to handle spikes.

● Cost Efficiency: Scales down during low
demand to save resources.

● Customizable Metrics: Can use custom
metrics for more tailored scaling

Use Case
Ideal for web applications and APIs
with variable traffic patterns

Purpose
Automatically adjusts the number of pod
replicas based on workload demands to
ensure optimal performance

How it Works

Horizontal Pod Autoscaler

Key Benefits

● Scale-Up: Adds nodes when pods can't
be scheduled due to resource limits

● Scale-Down: Removes nodes with low
utilization to save costs

● Cost Efficiency: Only pays for the resources you
need

● Flexibility: Handles variable workloads
smoothly

● High availability: Ensures that the cluster
always has sufficient capacity for the workload.

Use Case
Ideal for unpredictable, bursty
workloads like batch jobs and
development environments

Purpose
Dynamically scales the resource pool i.e
number of nodes in a cluster to match
workload demands

How it Works

Cluster Autoscaler

Cluster Autoscaler

Sto2Sto1

Node1

App
Pod

Other
Pods

Node2

App
Pod

Other
Pods

Node3

App
Pod

Other
Pods

Node4

Other
Pods

App
Pod

100% of any resource
requested

100% of any resource
requested

App
Pod

Sto2Sto1

Node1

App
Pod

Other
Pods

Node2

App
Pod

Other
Pods

Node3

App
Pod

Other
Pods

Node4

Other
Pods

App
Pod

100% of any resource
requested

66% of any resource
requested

Node5

App
Pod

Cluster Autoscaler

Thank you!

